General
In the light of the serious consequences for the individual, and liabilities
which can be incurred in the event of a positive or incorrect test result,
Simpson et al1 discussed the need for established procedures covering storage,
chain of custody, confirmation of results and appropriate legal standards for
‘library’ matching of spectra from unknown substances (e.g. designer drugs)
requiring identification.
Most blood and urine tests for the presence of cannabinoids differ from
alcohol test results as these measure inactive metabolites of cannabis, and not
the active drug itself. Alcohol produces clear dose-related impairment as
measured by breath, blood or urine tests. The presence of cannabinoids in
urine merely signifies that the person had used or been exposed to cannabis at
some point prior to the test2.
Cannabis Pharmacokinetics
In the light of the serious consequences for the individual, and liabilities
which can be incurred in the event of a positive or incorrect test result,
Simpson et al1 discussed the need for established procedures covering storage,
chain of custody, confirmation of results and appropriate legal standards for
‘library’ matching of spectra from unknown substances (e.g. designer drugs)
requiring identification.
Most blood and urine tests for the presence of cannabinoids differ from
alcohol test results as these measure inactive metabolites of cannabis, and not
the active drug itself. Alcohol produces clear dose-related impairment as
measured by breath, blood or urine tests. The presence of cannabinoids in
urine merely signifies that the person had used or been exposed to cannabis at
some point prior to the test2.
Cannabis Pharmacokinetics
Pharmacokinetics is the study of the time course of how drugs are distributed
in the body, how long the effects last and how such effects relate to drug tests.
in the body, how long the effects last and how such effects relate to drug tests.
The major problem with measurement of metabolites is the very long
detection times, owing the the rapid deposition of cannabinoids in inert fatty
tissue following administration. Johannson et al3 reported that total amount of
THC metabolites and the levels of delta THC-acid could be followed up to 25
days after abstinence using EMIT cannabinoid assay and HPLC.
detection times, owing the the rapid deposition of cannabinoids in inert fatty
tissue following administration. Johannson et al3 reported that total amount of
THC metabolites and the levels of delta THC-acid could be followed up to 25
days after abstinence using EMIT cannabinoid assay and HPLC.
The residual level of THC in the bloodstream occurs when THC is released
from the adipose (fatty) tissues, where it is deposited shortly after smoking.
THC is also converted to its inert acid form within minutes of ingestion4. The
half-life of THC in fatty tissue is approximately 8 days56. There is little
evidence that clearance rates for THC differ significantly between naive and
experienced cannabis users.
The distribution of THC in body tissues is shown in fig 1 below. Plasma
levels drop dramatically following cessation of use, with increased absorption
in the brain and high perfusion tissues, but after 1 hour residual levels fall
much more gradually. Levels in body fat increase over a period of hours or
days, and slowly release metabolites into the bloodstream thereafter. The
slow clearance rate from body fat is the main reason why cannabinoids can be
detected in blood or urine for many days or weeks following cessation of use.
Fig 1 - Distribution of THC in the Body (Kreutz & Axelrod (1973)7
Harder & Rietbrock8 noted the effects on plasma levels and intoxication
produced by smoking different strengths of ‘joint’ at different intervals,
finding that the effect of a strong (9mg) reefer would last around 45min, or if
smoked continuously a recovery within 100 minutes, with a continuous high if
smoked hourly with a recovery after 150 minutes. Weak (3mg) and hemp
(1mg) reefers produced lower levels of intoxication and more rapid recovery
times.
Chesher9 summarised that.the inactive metabolite THC acid, formed in the
liver from metabolism of THC, appears after THC in blood, and if present
when the a subsequent dose is smoked, higher concentrations would ensue.
Unmetabolised THC may be stored, and gradually released, from body fat for
up to 28 days in chronic users. He commented: ‘analytical data that provides
a value only for the metabolite can only be validly interpreted as indicating
recent consumption of cannabis ... a matter of hours or days. For this reason
quantitative determination of only the metabolite is of no value to determine
possible impairment.’
McBurney et al 10describe a study of plasma concentrations of THC in users
where one subject was rejected as having a concentration of 37ng/ml prior to
the test. It is not stated when the subject had last smoked marijuana. Perez-
Reyes et al11 tested concentrations in experienced marijuana smokers who had
refrained for 6 days prior to the experiment. Two cigarettes, with an average
of 882mg cannabis at 1% THC (8.82mg THC), were smoked two hours apart,
blood samples being taken every 5 minutes for the first 20 minutes after
smoking, and at 10 minute intervals thereafter. The first cigarette produced a
level of 70ng/ml at 10 minutes roughly 17ng/ml at 20 min, and roughly
3ng/ml at 2 hours. The second produced respective levels of 90, 17 and
5ng/ml at similar intervals after smoking. There is a rapid rise in THC
concentration during smoking, and then an equally rapid fall which levels off
at roughly 30 min post-smoking and falls gradually thereafter.
Sticht & Kaferstein12 estimated that the blood THC concentrations produced
in a 70kg person smoking 15mg THC would peak at 7-8 minutes, after 30
minutes between 14-42ng/ml, and at 60 minutes between 7.5-14ng/ml.
Rosencranz13 reported that blood levels of THC peak at 5 minutes, with a
distribution half-life of 30 minutes, and elimination half-life of 18-36 hours.
For THC-acid, levels peaked at 20 minutes, with distribution and elimination
half-lives of 15-30 minutes and 24-72 hours respectively.
Agurell et al14 studied THC levels in one “heavy marijuana user”. His plasma
THC was measured each day for four days before and one hour after smoking
one cigarette laced with 10mg radioactively labelled THC, and for 8 days after
ceasing all use.
Prior to the experiment his plasma THC was roughly
20ng/ml. The levels of labelled and unlabelled THC both rose after smoking
each cigarette, indicating that existing THC may be displaced from the fatty
tissues as fresh THC is absorbed. The pre-smoking unlabelled (i.e. residual)
THC level fell steadily over the period of the experiment (20ng to 9ng to 8ng
to 2ng/ml on successive days), still exceeding ten-fold the labelled (i.e. fresh)
THC concentration.
After 8 days abstinence the levels were 1ng/ml
unlabelled, and 0.1ng/ml labelled. The decline during the first period of the
experiment, when the subject was smoking 10mg THC per day, indicates that
his normal consumption may have exceeded this level, possibly by ten-fold or
more, i.e. 100mg THC per day.
Cone & Huestis15 postulated a model for predicting the time of marijuana
exposure from relative plasma concentrations of THC and THC-carboxy acid
metabolite (THCCOOH). These models were based on data from a controlled
clinical study of marijuana smoking. Such models allow prediction of the
elapsed time since marijuana use based on analysis for cannabinoids from a
single plasma sample and provide accompanying 95% confidence intervals
around the prediction. They noted that concentration estimates in the range of
7-29 ng/ml for amount of THC in blood is necessary for production of 50% of
the maximal subjective high effect. Their models were based on either THC
concentration,
tetrahydrocannabinol (THCCOOH) to THC in plasma16, noting that their
predicted times of exposure were generally accurate but tended to
overestimate time immediately after smoking and tended to underestimate
later times..
Cami et al17 studied the effects of expectancy on intoxication, noting a
tendency toward more marked subjective effects in subjects who expected and
received the drug, and that positive expectancy induced powerful subjective
effects in the absence of active THC.
Metabolite or active drug?
It has been postulated, on the basis of experimental studies, that levels of 11-
hydroxy THC (a psychoactive metabolite) in excess of 20ng/ml may be
indicative of recent use18, however this study used single doses, or a short
series of doses, of THC (150µg/kg) on volunteers, and would not measure
residual cannabinoid levels in longer-term users. There was a substantial
variation in clearance rates, with several subjects showing total cannabinoids
in urine samples (measured by EMIT) to be higher 18-22 hours after ingestion
than 0-6 hours after consumption.
Reeve et al19 compared plasma THC levels with performance on the roadside
sobriety test, finding that failures were associated with levels over 25-
30ng/ml. Sticht & Kaferstein20 estimated that the blood THC concentrations
produced in a 70kg person smoking 15mg THC would peak at 7-8 minutes,
after 30 minutes between 14-42ng/ml, and at 60 minutes between 7.5-
14ng/ml.
McBay21 compared THC and THC-COOH levels in a study involving smoked
marijuana cigarettes. THC-acid levels increased steadily following smoking,
but were still detectable long after intoxication would have ceased. Plasma
THC levels declined rapidly following cessation of smoking, but were almost
all still over 10ng/ml one hour later, and in the range of 1ng to 10ng/ml 2-4
hours after cessation of smoking.
Although there are many papers reporting plasma THC levels, there are no
papers which unequivocally relate plasma THC levels with overall
consumption. Most have been experimental studies matching short-term THC
levels with perceived psychotropic effects.
False Positives and Passive Smoking
Screening tests need to be confirmed by GCMS analysis, as positives may be
obtained by consumption on non-psychoactive substances such as hemp-seed
bars22, or milk from cattle grazing on wild cannabis23 (which could include
hemp silage).
Positive tests for cannabinoids in urine may also occur as a result of passive
smoking, with cannabinoid (THC-acid) levels of over 20ng/ml detectable in
one case 4 days after passive exposure24. It was concluded that presence of
cannabinoids in urine or blood is not unequivocal proof of active cannabis
smoking. Giardino25 reported that poor air quality could lead to THC-acid
positives (>15ng/ml) arising from passive inhalation of cannabis smoke.
Magerl et al26 found THC-acid levels of up to 30-50ng/ml from passive-
exposed subjects, and recommended a threshold of 65ng/ml to differentiate
between active and passive smoking of cannabis.
Mason et al27 produced plasma THC levels of 2.0-2.2ng/ml in passive smokers
in a confined space, whereas plasma THC was not detected in a study by Law
et al28 in a separate closed-space study where the smokers developed THC of
7.5ng/ml.
In a review of passive inhalation studies, Hayden29 reported that most studies
support the proposition that passive inhalation should be seriously considered
as a possible explanation for a positive urine test for marijuana, although he
noted that passive inhalation does not have a major effect outside the
laboratory.
Determining Current Use - saliva testing?
Valentine & Psaltis30 suggested use of fluorometic assay for detection of
cannabinol in human saliva as a correlate of use, and also suggested detection
mechanisms for breath31
Kircher et al32 describes the use of tandem
immunoaffinity chromatography and HPLC for determination of 9 THC
concentration in deproteinised human saliva.
Menkes et al33 studied salivary THC levels, subjective intoxication and heart
rate among 13 experienced volunteers abstinent for one week before the test.
Baseline THC levels of up to 3.4ng/ml (nanograms per millilitre) were
recorded (mean 0.36ng/ml). After smoking a single cigarette containing 11mg
THC, salivary THC levels substantially exceeded 100ng/ml for the first hour
after smoking, with levels over 10ng/ml persisting for up to 4 hours (fig 2).
Self-reported intoxication and heart rate were both substantially elevated for
over 1hour, heart rate was close to baseline by 80min, and low levels of
intoxication reported up to 3 hours after smoking. Salivary THC levels over
100ng/ml were associated with clear intoxication, and levels over 50ng/ml
with mild intoxication.
Salivary THC and subjective intoxication (Menkes et al)
THC is also converted to its inert acid form within minutes of ingestion4. The
half-life of THC in fatty tissue is approximately 8 days56. There is little
evidence that clearance rates for THC differ significantly between naive and
experienced cannabis users.
The distribution of THC in body tissues is shown in fig 1 below. Plasma
levels drop dramatically following cessation of use, with increased absorption
in the brain and high perfusion tissues, but after 1 hour residual levels fall
much more gradually. Levels in body fat increase over a period of hours or
days, and slowly release metabolites into the bloodstream thereafter. The
slow clearance rate from body fat is the main reason why cannabinoids can be
detected in blood or urine for many days or weeks following cessation of use.
Fig 1 - Distribution of THC in the Body (Kreutz & Axelrod (1973)7
Harder & Rietbrock8 noted the effects on plasma levels and intoxication
produced by smoking different strengths of ‘joint’ at different intervals,
finding that the effect of a strong (9mg) reefer would last around 45min, or if
smoked continuously a recovery within 100 minutes, with a continuous high if
smoked hourly with a recovery after 150 minutes. Weak (3mg) and hemp
(1mg) reefers produced lower levels of intoxication and more rapid recovery
times.
Chesher9 summarised that.the inactive metabolite THC acid, formed in the
liver from metabolism of THC, appears after THC in blood, and if present
when the a subsequent dose is smoked, higher concentrations would ensue.
Unmetabolised THC may be stored, and gradually released, from body fat for
up to 28 days in chronic users. He commented: ‘analytical data that provides
a value only for the metabolite can only be validly interpreted as indicating
recent consumption of cannabis ... a matter of hours or days. For this reason
quantitative determination of only the metabolite is of no value to determine
possible impairment.’
McBurney et al 10describe a study of plasma concentrations of THC in users
where one subject was rejected as having a concentration of 37ng/ml prior to
the test. It is not stated when the subject had last smoked marijuana. Perez-
Reyes et al11 tested concentrations in experienced marijuana smokers who had
refrained for 6 days prior to the experiment. Two cigarettes, with an average
of 882mg cannabis at 1% THC (8.82mg THC), were smoked two hours apart,
blood samples being taken every 5 minutes for the first 20 minutes after
smoking, and at 10 minute intervals thereafter. The first cigarette produced a
level of 70ng/ml at 10 minutes roughly 17ng/ml at 20 min, and roughly
3ng/ml at 2 hours. The second produced respective levels of 90, 17 and
5ng/ml at similar intervals after smoking. There is a rapid rise in THC
concentration during smoking, and then an equally rapid fall which levels off
at roughly 30 min post-smoking and falls gradually thereafter.
Sticht & Kaferstein12 estimated that the blood THC concentrations produced
in a 70kg person smoking 15mg THC would peak at 7-8 minutes, after 30
minutes between 14-42ng/ml, and at 60 minutes between 7.5-14ng/ml.
Rosencranz13 reported that blood levels of THC peak at 5 minutes, with a
distribution half-life of 30 minutes, and elimination half-life of 18-36 hours.
For THC-acid, levels peaked at 20 minutes, with distribution and elimination
half-lives of 15-30 minutes and 24-72 hours respectively.
Agurell et al14 studied THC levels in one “heavy marijuana user”. His plasma
THC was measured each day for four days before and one hour after smoking
one cigarette laced with 10mg radioactively labelled THC, and for 8 days after
ceasing all use.
Prior to the experiment his plasma THC was roughly
20ng/ml. The levels of labelled and unlabelled THC both rose after smoking
each cigarette, indicating that existing THC may be displaced from the fatty
tissues as fresh THC is absorbed. The pre-smoking unlabelled (i.e. residual)
THC level fell steadily over the period of the experiment (20ng to 9ng to 8ng
to 2ng/ml on successive days), still exceeding ten-fold the labelled (i.e. fresh)
THC concentration.
After 8 days abstinence the levels were 1ng/ml
unlabelled, and 0.1ng/ml labelled. The decline during the first period of the
experiment, when the subject was smoking 10mg THC per day, indicates that
his normal consumption may have exceeded this level, possibly by ten-fold or
more, i.e. 100mg THC per day.
Cone & Huestis15 postulated a model for predicting the time of marijuana
exposure from relative plasma concentrations of THC and THC-carboxy acid
metabolite (THCCOOH). These models were based on data from a controlled
clinical study of marijuana smoking. Such models allow prediction of the
elapsed time since marijuana use based on analysis for cannabinoids from a
single plasma sample and provide accompanying 95% confidence intervals
around the prediction. They noted that concentration estimates in the range of
7-29 ng/ml for amount of THC in blood is necessary for production of 50% of
the maximal subjective high effect. Their models were based on either THC
concentration,
tetrahydrocannabinol (THCCOOH) to THC in plasma16, noting that their
predicted times of exposure were generally accurate but tended to
overestimate time immediately after smoking and tended to underestimate
later times..
Cami et al17 studied the effects of expectancy on intoxication, noting a
tendency toward more marked subjective effects in subjects who expected and
received the drug, and that positive expectancy induced powerful subjective
effects in the absence of active THC.
Metabolite or active drug?
It has been postulated, on the basis of experimental studies, that levels of 11-
hydroxy THC (a psychoactive metabolite) in excess of 20ng/ml may be
indicative of recent use18, however this study used single doses, or a short
series of doses, of THC (150µg/kg) on volunteers, and would not measure
residual cannabinoid levels in longer-term users. There was a substantial
variation in clearance rates, with several subjects showing total cannabinoids
in urine samples (measured by EMIT) to be higher 18-22 hours after ingestion
than 0-6 hours after consumption.
Reeve et al19 compared plasma THC levels with performance on the roadside
sobriety test, finding that failures were associated with levels over 25-
30ng/ml. Sticht & Kaferstein20 estimated that the blood THC concentrations
produced in a 70kg person smoking 15mg THC would peak at 7-8 minutes,
after 30 minutes between 14-42ng/ml, and at 60 minutes between 7.5-
14ng/ml.
McBay21 compared THC and THC-COOH levels in a study involving smoked
marijuana cigarettes. THC-acid levels increased steadily following smoking,
but were still detectable long after intoxication would have ceased. Plasma
THC levels declined rapidly following cessation of smoking, but were almost
all still over 10ng/ml one hour later, and in the range of 1ng to 10ng/ml 2-4
hours after cessation of smoking.
Although there are many papers reporting plasma THC levels, there are no
papers which unequivocally relate plasma THC levels with overall
consumption. Most have been experimental studies matching short-term THC
levels with perceived psychotropic effects.
False Positives and Passive Smoking
Screening tests need to be confirmed by GCMS analysis, as positives may be
obtained by consumption on non-psychoactive substances such as hemp-seed
bars22, or milk from cattle grazing on wild cannabis23 (which could include
hemp silage).
Positive tests for cannabinoids in urine may also occur as a result of passive
smoking, with cannabinoid (THC-acid) levels of over 20ng/ml detectable in
one case 4 days after passive exposure24. It was concluded that presence of
cannabinoids in urine or blood is not unequivocal proof of active cannabis
smoking. Giardino25 reported that poor air quality could lead to THC-acid
positives (>15ng/ml) arising from passive inhalation of cannabis smoke.
Magerl et al26 found THC-acid levels of up to 30-50ng/ml from passive-
exposed subjects, and recommended a threshold of 65ng/ml to differentiate
between active and passive smoking of cannabis.
Mason et al27 produced plasma THC levels of 2.0-2.2ng/ml in passive smokers
in a confined space, whereas plasma THC was not detected in a study by Law
et al28 in a separate closed-space study where the smokers developed THC of
7.5ng/ml.
In a review of passive inhalation studies, Hayden29 reported that most studies
support the proposition that passive inhalation should be seriously considered
as a possible explanation for a positive urine test for marijuana, although he
noted that passive inhalation does not have a major effect outside the
laboratory.
Determining Current Use - saliva testing?
Valentine & Psaltis30 suggested use of fluorometic assay for detection of
cannabinol in human saliva as a correlate of use, and also suggested detection
mechanisms for breath31
Kircher et al32 describes the use of tandem
immunoaffinity chromatography and HPLC for determination of 9 THC
concentration in deproteinised human saliva.
Menkes et al33 studied salivary THC levels, subjective intoxication and heart
rate among 13 experienced volunteers abstinent for one week before the test.
Baseline THC levels of up to 3.4ng/ml (nanograms per millilitre) were
recorded (mean 0.36ng/ml). After smoking a single cigarette containing 11mg
THC, salivary THC levels substantially exceeded 100ng/ml for the first hour
after smoking, with levels over 10ng/ml persisting for up to 4 hours (fig 2).
Self-reported intoxication and heart rate were both substantially elevated for
over 1hour, heart rate was close to baseline by 80min, and low levels of
intoxication reported up to 3 hours after smoking. Salivary THC levels over
100ng/ml were associated with clear intoxication, and levels over 50ng/ml
with mild intoxication.
Salivary THC and subjective intoxication (Menkes et al)
Significance of test results - Policy & Practice
Most urine tests only detect an inactive metabolite - THC carboxylic acid.
The results for cannabinoid metabolites in urine are of no significance
whatsoever in determining intoxication or performance impairment, as the
THC-acid is not an active compound, and can persist for many weeks after chronic use.
Presence of active drug (i.e. THC - delta-9-
tetrahydrocannabinol), or active metabolite 11-hydroxy THC - present in the
period shortly following smoking of cannabis) would indicate recent use
capable of causing intoxication or impairment.
A positive sample could easily be caused by passive smoking, or ingestion of
non-psychoactive cannabis products (e.g. hemp seed bars). Such a sample
could also have been produced days or weeks after taking the drug, long after
any cannabis taken would have ceased to have any effect.
In many labs the cutoff threshold for ‘cannabis’ - a misleading term when
metabolite is measured - is extremely low (15ng/ml), in comparison to other
drugs. For instance amphetamine thresholds are commonly 1000ng/ml, or 1
microgram per millilitre, representing a relatively high dosage for the average
individual, such as might be produced shortly after taking a gram of street
‘speed’.
I note the cut off threshold used for urine testing by Home Office researchers35
is 50ng/ml, when using the EMIT (immunoassay) technique. Magerl et al36
recommended a threshold of 65ng/ml to differentiate between active and
passive smoking.
I would consider the cut-off threshold currently in widespread use by drug
testing laboratories to be unreasonably low, and highly susceptible to false-
positive results. Testing for the THC-acid metabolite has no relevance to
considerations of impairment or intoxication ‘on the job’.
Most urine tests only detect an inactive metabolite - THC carboxylic acid.
The results for cannabinoid metabolites in urine are of no significance
whatsoever in determining intoxication or performance impairment, as the
THC-acid is not an active compound, and can persist for many weeks after chronic use.
Presence of active drug (i.e. THC - delta-9-
tetrahydrocannabinol), or active metabolite 11-hydroxy THC - present in the
period shortly following smoking of cannabis) would indicate recent use
capable of causing intoxication or impairment.
A positive sample could easily be caused by passive smoking, or ingestion of
non-psychoactive cannabis products (e.g. hemp seed bars). Such a sample
could also have been produced days or weeks after taking the drug, long after
any cannabis taken would have ceased to have any effect.
In many labs the cutoff threshold for ‘cannabis’ - a misleading term when
metabolite is measured - is extremely low (15ng/ml), in comparison to other
drugs. For instance amphetamine thresholds are commonly 1000ng/ml, or 1
microgram per millilitre, representing a relatively high dosage for the average
individual, such as might be produced shortly after taking a gram of street
‘speed’.
I note the cut off threshold used for urine testing by Home Office researchers35
is 50ng/ml, when using the EMIT (immunoassay) technique. Magerl et al36
recommended a threshold of 65ng/ml to differentiate between active and
passive smoking.
I would consider the cut-off threshold currently in widespread use by drug
testing laboratories to be unreasonably low, and highly susceptible to false-
positive results. Testing for the THC-acid metabolite has no relevance to
considerations of impairment or intoxication ‘on the job’.
Thank you so much for the information...
BalasHapusI am going for job interview which requires Urine and how to pass a mouth swab . For the first one I am using honey, vinegar and lemon juice. For second one I ma gonna apply your product. hope it will work :)